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Abstract. The properties of f0(980), f0(1370) and f0(1500) mesons are studied by means of a generalization
of the Breit-Wigner approach preserving unitarity in case of several overlapping resonances.

PACS. 11.80.-m Relativistic scattering theory – 13.25.Jx Decays of other mesons – 13.75.Lb Meson-meson
interactions – 14.40.Cs Other mesons with S = C = 0, mass < 2.5 GeV

1 Introduction

A goal of this work is to find the parameters of f0-mesons
using a method appropriate for broad overlapping reso-
nances. The obvious advantage of the Breit-Wigner (BW)
approach is that its parameters have a direct physical
meaning. Simple BW parameterization is applicable only
in case of well-separated resonances, far away from the
channels’ thresholds. In this generalization, the multichan-
nel scattering amplitudes are sums of BW terms with rela-
tive phases that are not free parameters but determined by
the unitarity relations. The partial and total widths may
be energy dependent; they are approximately constant
only if the resonances are far away from all thresholds.

We also show how to apply this BW method for pro-
duction processes and use it to describe the f0 states in
N̄N annihilation.

2 Unitary BW S-matrix for overlapping
resonances

In a previous work [1], we developed a generalization of the
BW method applied to the problem of several resonances
which could be strongly overlapping. This work also in-
cludes a comparison of different methods suitable for ap-
plication to overlapping resonances. An approach has been
to write down the S-matrix as a sum of resonance terms,
and then to try to solve the constraints imposed by unitar-
ity on the resonance parameters. The K-matrix method
in which unitarity is satisfied is a common way used to de-
scribe experimental data. However, the “physical” states
and the poles in the K-matrix formalism are not equiv-
alent, the “physical” particles are more closely related to
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BW description. Thus, writing down the S-matrix as a
sum of resonance terms with no redundant parameters
could give a more direct way to extract the resonances
parameters from data. Our purpose is to give an algebraic
derivation of the unitarity constraints and their solutions
for the BW approach. Having done this, the formalism can
be applied to production reactions in which the overlap-
ping resonances appear in the final states, together with
another particle, or particles (in a similar manner to the
K-matrix method [2]). Some features of our method are
close to the approach of work [3].

For scalar mesons the threshold energy dependence is
very important. In the development of work [1] the scat-
tering matrix contains phase space factors, ρk(E):

S(E) = I − i
√
ρ(E) T (E)

√
ρ(E). (1)

Lets write T (E) in a resonance form

T =
N∑

r=1

grgr

E − εr(E)
, Tij =

N∑
r=1

eiϕ
(r)
ij

|gir| · |grj |
E − εr(E)

,

where gr ≡ gx
r + igy

r are complex, energy-independent
N -components vectors (N is the number of coupled chan-
nels), gri are coupling constants, εr(E) ≡ εx

r (E)+ iεy
r(E).

The interference of the resonances with the same decay
channels is the key aspect of any analysis and interpreta-
tion. In the BW approach this interference is often taken
into account by relative phases in BW terms which are
treated as free parameters, the most often just 0 or π. The
results of analysis critically depend on the choice of this
phase set. Whether or not these phases are included, such
a sum of BW terms is depleted of unitarity which is the
basic point in the BW description. In our approach, real
energy-independent phases ϕri are not free parameters but
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should be determined in such a way which preserves uni-
tarity. The scattering matrix T is free of threshold singu-
larities which are included in the diagonal M ×M matrix
ρ(E) with the elements ρk(E). Function ρk(E) is imag-
inary below the k-th threshold, and real when E ≥ Ek.
(We use energy E rather than s = E2 only in order to sim-
plify some formulae.) A general way to include background
is described in work [1] and in the case when it is elas-
tic, formula (1) for Sij should be multiplied by ei(δB

i +δB
j )

(background phases can depend on energy).
To find the relations that should be imposed on the

vectors gr to keep the matrix S unitary and symmetric,
we compose their imaginary parts through the real ones:

gy
r = ur1g

x
1 + ur2g

x
2 + ...+ urNgx

N , (r = 1, ..., N),

where U = {urk}N
r,k=1 is a real antisymmetric matrix.

Vectors gr satisfy the relations

M∑
k=1

ρk(E)θk(E) |grk|2 = − 2
S
[S + 2Qr]εy

r ,

M∑
k=1

ρkθkRe(g∗qkgrk) = − 2
S
[Fqr(εx

q − εx
r ) +Gqr(εy

q + εy
r)],

M∑
k=1

ρkθkIm(g∗qkgrk) = − 2
S
[Gqr(εx

q − εx
r )− Fqr(εy

q + εy
r)].

Here r = 1, ..., N , q = r + 1, ..., N and θk(E) is the step
function: θk(E) = 0, if E < Ek; θk(E) = 1, if E ≥ Ek.
The (constant) coefficients S, Qr, Fqr Gqr are determined
via the elements of the coupling matrix U (see [1]).

Matrix U gives a measure of resonances overlap. If
|mr − mr′ | 	 Γr + Γr′ , the matrix elements urk → 0
and vectors gr are getting real and orthogonal: gr = gx

r ,
(grgq) = 0, thus we obtain an expression similar to
Flatte’s one-resonance formula [4]:

Tij =
N∑

r=1

girgrj

E −mr + i
2

M∑
k=1

ρk(grk)2
. (2)

In the general case unitarity provides the expressions
for energy-dependent masses and widths:

Γr(E) = −2εy
r(E) =

S

S + 2Qr

M∑
k=1

ρk(E)θk(E) |grk|2,

εx
r (E) = εx

1(E) +
S

2(F 2
1r +G2

1r)

M∑
k=1

ρk(E)θk(E)

× [F1rRe(g∗1kgrk) +G1rIm(g∗1kgrk)] ,

εx
1(E) = m1 − i

S

2(S + 2Q1)

M∑
k=1

ρk(E)(1− θk(E))|g1k|2.

m1 is the “bare” mass in the first BW term. For three
resonances the coefficients in these formulae are:

S = 1− α2 − β2 − γ2,

Q1 = α2 + β2, Q2 = α2 + γ2, Q3 = β2 + γ2,

F12 = −α, F13 = −β, F23 = −γ,
G12 = βγ, G13 = −αγ, G23 = αβ.

Real parameters α, β, γ are the elements of the matrix

U =


 0 −α −β
α 0 −γ
β γ 0


 ,

and are restricted by the relation α2 + β2 + γ2 < 1. The
rest of the constraints on gr are quadratic equations for
each k = 1, ...,M .

It is simple to consider the slightly more general case
in which gir is replaced by fpr, where p (the production
channel, N̄N in our case) does not occur in the sums in
Γr(E) and εr(E). We would then have for the transition
from the production state p to final state k

Fpk =
N∑

r=1

fprgrk

E − εx
r (E) + i

2Γr(E)
. (3)

Vectors fr like vectors gr are complex. The amplitudes F
have the same poles as the amplitudes T .

The “running mass” εx
r (E) is approximately constant

only in case when all the resonances are far away from
thresholds. The equation E − εx

r (E) = 0 gives the mass
of the r-th resonance, mr (generally it can have several
roots, but for f0 states we obtain one root for each r).

Branching ratios of the decay of the r-th resonance
into the k-th channel are given by

Brk =
Γrk

Γr
=

ρk(mr)θk(mr) |grk|2
M∑

k=1

ρk(mr)θk(mr) |grk|2
. (4)

3 Analysis of f0(980), f0(1370), f0(1500)
states

Similar to a number of other analyses, our model includes
four channels: ππ, K̄K, ηη, 4π. We do not include the
ηη′-channel due to lack of data. Phase state factors are:

ρk(s) =
√

(s− sk)/s,
s1 = 4m2

π, s2 = 4m2
K , s3 = 4m2

η,

ρ4(s) =
√

(s− s4)/s/ (1 + exp [Λ · (s0 − s)]) ,
s4 = 16m2

π, s0 = 2.8 (GeV−2), Λ = 3.5 (GeV−2).

For ρ4 we use the strongly energy-dependent 4π phase
factor [5] that approximates either the ρρ or σσ phase
space. With a small change in the parameter s0 one can
assume that the 4π simulates all inelastic channels not
included in our scheme directly.
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Fig. 1. Phase δ and inelasticity η for I = J = 0 ππ scattering.
Experimental points are from [6].

Table 1. Branching ratios (in %) and relative to f0.98 phases
(in degrees).

State Bf0.98 Bf1.37 ϕf1.37 Bf1.50 ϕf1.50

ππ 77.3 8.2 −28.9 4.0 28.4
K̄K 20.8 5.8 −38.0 3.4 19.2
ηη 1.9 52.7 68.2 57.8 16.6
4π 0.01 33.3 88.7 34.8 26.5

Figure 1 shows the ππ S-wave within the model includ-
ing three f0 states. Ignoring complications connected with
identical pions in the final states, the formula which was
used in a number of paper (see [7]) for the resonant mass
spectra in the reactions N̄N → (k)π0 can be written as

dNk

dm
= Ck

√[
1− (m−mπ)2

4m2
N

] [
1− (m+mπ)2

4m2
N

]
2m
π

×|ρk(m)Fpk(m)|2,

where Fpk are the production amplitudes (3). The fit of
some Crystal Barrel data is shown in figs. 2 and 3.

Masses and widths of f0 states (in GeV) are

m1 = 0.987, m2 = 1.356, m3 = 1.549,
Γ1 = 0.117, Γ2 = 0.269, Γ3 = 0.151.

These numbers are compatible with previous findings [8].
Table 1 contains other parameters having physical mean-
ing. The number of free parameters in the unitarized BW
method is MN comparing to N(M + 1) in a naive BW
(if we take a sum of terms (2)) and K-matrix methods.
Here we use the “bare” mass m1, coefficients α, β, γ, and 8
out of 12 real parts of vectors gir as free parameters. The
fit of N̄N annihilation processes also requires N complex
numbers fpr. The ππ background phase shift is a linear
function of energy and is about 90◦ near K̄K threshold.
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Fig. 2. Normalized ηη mass spectra in p̄p → (ηη)π0 at rest.
The data are from [9].
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Fig. 3. Normalized 4π0 mass spectra in N̄N → (4π0)π0 at
rest. The data are from [10].

4 Conclusion

We present a scheme of unitarization of a sum of BW
terms which can be useful to the study of several overlap-
ping resonances within the same partial wave. The result-
ing formula (1) resembles a traditional sum of BW terms
with the relative phases that are not free parameters but
are determined from the unitarity constraints.

We apply this approach to the analysis of the scalar
f0-mesons in the ππ scattering and N̄N annihilation at
rest. The results show that f0(1370) and f0(1500) states
strongly interfere. This stresses the necessity to use uni-
tary description. Masses and widths of these states are
compatible with previous findings. In a model with four
coupled channels, the main decay modes for f0(1370) and
f0(1500) are ηη and 4π, while the ππ and K̄K decays are
suppressed.
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